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Abstract 
 
Dynamic response of infinite beams supported by random viscoelastic Pasternak foundation subjected to harmonic 

moving loads is studied. Vertical stiffness in the support is assumed to follow a stochastic homogeneous field consist-
ing of a small random variation around a deterministic mean value. By employing the first order perturbation theory 
and calculating appropriate Green’s functions, the variance of the deflection and bending moment are obtained analyti-
cally in integral forms. To simulate the induced uncertainty, two practical cases of cosine and exponential covariance 
are utilized. A frequency analysis is performed and influences of the correlation length of the stiffness variation on the 
beam responses are investigated. It is found that in each frequency response there is a peak value of frequency, which 
behaves as a decreasing function of the correlation length. Among two coefficient of variation of the beam deflection 
and the bending moment, the former is higher in the case of exponential covariance and it is independent of the magni-
fication of the correlation length. 
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1. Introduction 

The investigation on the consequences of a force 
moving along an infinite beam rested on viscoelastic 
foundation is of great theoretical and practical signifi-
cance, in particular its application in the modeling of 
railway track [1, 2]. In most of the cases and for sim-
plicity, the track parameters have been assumed to 
have a deterministic characteristic equation, but re-
cently mechanical properties of the ballast have been 
found to vary significantly along the track. The uncer-
tainty of the track parameters and surface irregularity 
of the rail are two important sources of random vibra-
tion in railway tracks and they lead to vibrations of 
the track even if no other external excitation is ap-

plied. Many reasons such as non-uniformity in pack-
ing the ballast and also some natural and operational 
sources can easily cause random distribution of the 
track properties along its length. Because of this ran-
dom distribution, coefficients of the differential equa-
tions of motion become random functions of the posi-
tion and as the moving load is travelling on the foun-
dation, the randomness of the foundation parameters 
causes an excessive vibration. Since this excessive 
vibration arises from an internal source it is called 
‘parametric excitation’. In the literature, a few studies 
have been carried out and some related problems 
have been treated numerically and analytically in 
recent years. Dynamic response of an Euler-Bernoulli 
beam resting on a Winkler random foundation has 
been obtained analytically in [3] under an idealistic 
assumption of the white noise spectral density for the 
uncertainty of the foundation stiffness. Behavior of an 
infinite Euler-Bernoulli beam on a Kelvin foundation 

†This paper was recommended for publication in revised form by
Associate Editor Eung-Soo Shin 

*Corresponding author. Tel.: +98 21 73913523, Fax.: +98 21 77451568
E-mail address: Younesian@iust.ac.ir 
© KSME & Springer 2009 



3014  D. Younesian et al. / Journal of Mechanical Science and Technology 23 (2009) 3013~3023 
 

 

with randomly varying parameters along the beam is 
examined in [4]. The authors used finite element 
method and found that randomness of the foundation 
stiffness is of greater importance than the uncertainty 
in the damping. They also studied the influence of the 
load speed on the beam responses. Interaction of an 
imperfect track and a moving random load using the 
method of integral spectral decomposition was stud-
ied in [5, 6] studied. They showed that imperfections 
could not be modeled by white noise. The response of 
a single-degree-of-freedom vehicle moving uniformly 
along an Euler-Bernoulli beam resting on a modified 
Kelvin foundation with randomly distributed stiffness 
has been studied in [7, 8]. They showed that the verti-
cal motion of a moving vehicle and the beam deflec-
tion increase with the vehicle speed and also with the 
correlation length of the stiffness variation. A com-
prehensive investigation on the literature indicates 
that there are few works published in this area and 
lack of a frequency analysis is quite clear. Vibration 
of infinite beams on various type of supports consist-
ing of linear, nonlinear and uncertain viscoelastic 
foundations subjected to harmonic moving loads was 
studied in [9-12]. 

In the present paper, using the first order perturba-
tion method, the response analysis of an infinite Ti-
moshenko beam on the viscoelastic foundation under 
a harmonic moving load is carried out. To simulate 
the behavior of the foundation, Pasternak viscoelastic 
model is used. This model includes a Kelvin founda-
tion in conjunction with a shear elastic layer which 
can model the track more realistically [7, 8, 13]. 
Based on this model, the coefficient of variation of 
the beam deflection and bending moment at the point 
of the application of the moving force are obtained. 
Using the complex Fourier transformation, appropri-
ate Green’s functions are presented, and the mean and 
variance parts of the response of the beam are calcu-
lated analytically in the integral forms. Using the 
residue theorem, for two practical cases of random 
foundations, a parametric study is carried out and the 
effects of correlation length on the coefficient of 
variations are studied. A frequency analysis is per-
formed as well. The solution and also the parametric 
study are directed to make the outcomes of this paper 
more applicable in different branches of railway en-
gineering such as noise analysis of tracks, passenger 
comfort analysis of railway vehicles, dynamic and 
fatigue design of tracks in which the frequency re-
sponse has an important role. 

 
 
Fig. 1. Timoshenko beam on random Pasternak foundation. 
 

2. Theory and formulation 

Fig. 1 illustrates a beam on a random viscoelastic 
foundation under a harmonic moving load. By using 
Hamilton’s principle and employing the Timoshenko 
beam theory, one can obtain the differential equations 
of the motion as ([9-12]) 
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in which A, E, G, I, k* and ρ are cross-sectional area 
of the beam, the modulus of elasticity, shear modulus, 
second moment of area, sectional shear coefficient 
and beam material density and v, Ω, w, and φ are the 
load speed and frequency, beam deflection and beam 
slope due to bending, respectively. Moreover, Pf 
represents the force induced by the foundation per 
unit length of the beam. In the case of a random vis-
coelastic foundation it can be calculated as: 
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in which, k (x) and µ are the foundation stiffness and 
the shear layer stiffness and c is damping coefficient 
of the foundation. The foundation stiffness can be 
decomposed into its constant mean value, km, and 
corresponding stochastic component, k (x): 
 

( ) ( ) ( )m s m sk x k k x k k xε ∗= + = +   (4) 
 
in which ks* (x) is a random stationary ergodic func-
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tion with zero mean value and ε is the small parame-
ter. Using the regular perturbation method one can 
assume [11, 14]: 
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Substituting Eqs. (5) and (6) in Eqs. (1) and (2) and 

comparing the terms with the same powers of pa-
rameter ε, one can get:  
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To calculate the steady state response of the beam 

we use the Galilean co-ordinate transformation such 
as:  

 
s x vt= −   (9) 

 
Since the beam length is considered to be infinite, 

the boundary conditions are 
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in which wst (s) and φst (s) are steady state descrip-
tions of w (x,t) and φ (x,t) and consequently can be 
written as 
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The above boundary conditions represent the fact 

that at points far enough from the point of the load 
application the central line deflection, its slope, curva-
ture, shear force and bending moment are all ap-
proaching to zero. 

According to the Timoshenko beam theory, the 
bending moment along the beam is given by 
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Using the state variable transformation of  
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In which, for j=0,1,…, wjA and ψj are the amplitude 

and the phase of the steady state response, wj and 
similarly φjA and θj are the amplitude and the phase of 
φj. After utilizing the chain rule differentiation on the 
Eqs. (7) and (8) and considering Eq. (14), one can get 
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After applying the following complex Fourier 

transformation, i.e., Eq. (17) to Eq. (15) and imposing 
the boundary conditions of Eq. (10), Fourier trans-
forms of w0 (s) and φ0 (s) i.e. W0 (q) and Φ0 (q) are 
obtained as: 
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General definitions of all the above coefficients are 

listed in Table 1. If an inverse Fourier transform is 
taken from both sides of Eqs. (18) and (19) one ob-
tains:  
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Using a similar procedure for Eq. (16) and using 

appropriate Green’s functions and the convolution 
integral theorem, the closed form solutions are ob-
tained for j=1,2,… as 
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in which Green’s functions Gw (ξ) and GM (ξ) are 
defined as 
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All Bi coefficients in the above Green’s functions 

are defined in Table 1.  
It should be noted that the residue theorem is used 

for calculating the Green’s function and also the nu-
merical values of the dynamic response. In this way 
Gw can be calculated as  
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in which, zj represents the poles of the integrand of 
Gw in the upper half and zk represents its poles in the 
lower half of the complex plane and zjr represents its 
real poles. Moreover, the GM is obtained in a similar 
trend. 

From Eqs. (11) and (12), the mean values of the 
beam deflection and bending moment are: 

 
Table 1. Definition of the coefficients appeared in related 
Green’s functions. 
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Since the mean value of the stochastic part of the 

stiffness is zero, Eq. (22) implies that the mean values 
of the higher perturbation terms are all zero, i.e., 
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The centered values of the deflection and bending 
moment are: 
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With regard to the definition of the covariance of a 
random function [15] and Eq. (20-22), the covariance 
of the deflection and the bending moment are ob-
tained as 
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in which Covkk (ξ1 ,ξ2) is the covariance of the founda-
tion stiffness. Then, the variance of the deflection and 
the bending moment are 
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3. Numerical result 

For two practical types of foundation stiffness ex-
pressed in the form of exponential and cosine covari-
ance functions, a parametric study is carried out and 

the results are discussed in this section. These covari-
ance functions are in the form of: 
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where σ is the standard deviation of the random stiff-
ness and D is the correlation length. 

The numerical results are related to the coefficients 
of variation for the deflection (Cw(s)) and the bending 
moment (CM(s)) at the point of application of the 
moving force that is (s=0)  
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Before the main parametric study and in order to 

verify the numerical procedure, a special case of 
white noise is assumed for the covariance of the stiff-
ness. The numerical simulation is carried out in the 
vicinity of the resonance (f=291 Hz) for the non-
damped foundation. Analytical results for the Euler-
Bernoulli beam subjected to the harmonic moving 
point load was obtained in [3]. The obtained results 
for the Timoshenko beam are compared with those 
found in [3] in Fig. 2. As illustrated, very good corre-
lation can be seen between the two approaches. 

 
 
 

 
 
Fig. 2. Coefficient of variation versus the load speed in the 
vicinity of resonance (special case of the white noise has 
been assumed for covariance of the stiffness). 
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Table 2. Properties of the UIC60 rail, track and load [9, 10, 
16]. 
 

Item Notation Value 

Rail (UIC60) 

Young’s modulus (steel) E 210 GPa 

Shear modulus (steel) G 77 GPa 

Mass density  ρ 7850 kg/m3 

Cross sectional area A 7.69×10-3 m2 

Second moment of area I 30.55×10-6 m4 

Shear coefficient k* 0.40 

Foundation 

Mean stiffness km 202.66 MN/m2 

Viscous damping c 141.165 kNs/m2 

Stiffness variance σ2 10.822×1014 N2/m4 

Moving Load 

Load F 65 kN 

 

  
Fig. 3. Frequency effect on the distribution of the standard 
deviation of the deflection (v=200 km/hr) (Cosine covari-
ance). 

 
For a real track [17], a frequency analysis is carried 

out using the above two prescribed covariance func-
tions. The physical and geometrical properties of the 
track are listed in Table 2. The effects of the load 
frequency on the distribution of the standard deviation 
of the beam deflection and bending moment are illus-
trated in Figs 3-6 for the two abovementioned cases 
of cosine and exponential covariance. As can be seen, 
by increasing the load frequency the maximum stan-
dard deviation increases up to a point and then de-
creases. Moreover, it makes the distribution wider 
along the beam and causes the position of the peak 
values moves farther back with respect to the point of 
application of the moving load.  

 
 
Fig. 4. Frequency effect on the distribution of the standard 
deviation of the bending moment (v=200 km/hr) (Cosine 
covariance). 
 

 
 
Fig. 5. Frequency effect on the distribution of the standard 
deviation of the deflection (v=200 km/hr) (Exponential co-
variance). 
 

 
 
Fig. 6. Frequency effect on the distribution of the standard 
deviation of the bending moment (v=200 km/hr) (Exponen-
tial covariance). 
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To compare two theories of the Timoshenko and 
Euler beam, the same procedure has been done for the 
Euler beam with the governing equation of  
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Numerical results for the Euler beam are also in-

cluded in Figs 3-6. As seen, one can generally say 
that the magnitude of the maximum deflection of a 
Timoshenko beam is larger than that of an Euler 
beam, and inversely the magnitude of the maximum 
bending moment of a Timoshenko beam is lower than 
that of an Euler beam. Having a viewpoint focused on 
the energy transfer, one can conclude that for a track 
modeled by a Timoshenko beam on Pasternak foun-
dation larger fraction of the input.  

The frequency responses of the coefficient of varia-
tion of the deflection and bending moment are illus-
trated in Figs. 7 and 8. There are two frequencies at 
which Cw (0) and CM (0) are at their highest level 
similar to the frequency response of an S.D.F system. 
The peak frequency of the coefficient of variation of 
the deflection is higher than the bending moment and 
it decreases with increasing of correlation length as 
well as the coefficient of variation of the bending 
moment. In the case of exponential covariance, the 
correlation length has much lower effect on the fre-
quency responses (Figs. 9 and 10). Also can be seen, 
for the case of exponential covariance the coefficient 
of variance of the deflection is higher than that of the  

 
 

 
 
Fig. 7. Frequency response of the beam deflection at s=0 for 
various correlation lengths (D) (v=200 km/hr) (Cosine co-
variance). 

 
 
Fig. 8. Frequency response of the beam bending moment at 
s=0 for various correlation lengths (D) (v=200 km/hr) (Co-
sine covariance). 
 
 

 
 
Fig. 9. Frequency response of the beam deflection at s=0 for 
various correlation lengths (D) (v=200 km/hr) (Exponential 
covariance). 
 
 

 
 
Fig. 10. Frequency response of the beam bending moment at 
s=0 for various correlation lengths (D) (v=200 km/hr) (Expo-
nential covariance). 
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Fig. 11. Relationship between the coefficient of variation of 
the deflection at s=0 and the correlation length (v=200 km/hr) 
(Cosine covariance). 

 

 
 
Fig. 12. Relationship between the coefficient of variation of 
the bending moment at s=0 and the correlation length (v=200 
km/hr) (Cosine covariance). 

 

 
 
Fig. 13. Relationship between the coefficient of variation of 
the deflection at s=0 and the correlation length (v=200 km/hr) 
(Exponential covariance). 

 
 
Fig. 14. Relationship between the coefficient of variation of 
the bending moment at s=0 and the correlation length (v=200 
km/hr) (Exponential covariance). 
 
bending moment, but in the case of cosine covariance 
it depends on the magnification of the correlation 
length. For the case of cosine covariance the influence 
of the correlation length on the Cw (0) and CM (0) is 
illustrated in Figs. 11 and 12 for three different values 
of frequencies around the peak frequency. Saturation 
phenomenon that is getting independence from corre-
lation length at high values of D, can be seen for both 
Cw (0) and CM (0). In the case of CM (0), there is a 
peak value for D, which is a decreasing function of 
the frequency value and has a value between 1 to 2 
meters. Similar results can be seen for the case of 
exponential covariance in Figs 13 and 14. In this case 
there is no peak value of D and also the saturation 
phenomenon is taking place at much lower values of 
correlation length. 

Energy is transferred to the foundation rather than 
the beam because of the larger deflections. But in the 
case of Euler beam on the Pasternak foundation, due 
to larger values of the bending stresses, larger fraction 
of the input energy is transferred into the beam 
(against the Timoshenko beam theory). On the other 
hand, Euler theory has safer margins for designing of 
the beam, and Timoshenko theory has safer margins 
for designing of the foundation. 

To give more physical explanations and applica-
tions of the numerical results, it should be noted that 
the obtained results may be easily used for real tracks 
subjected to moving trains. Since all of the terms of 
the response (wj) are linear functions with respect to 
the magnitude of the moving load, i.e., F (Eq. (20)), 
the results can be easily extended for the number of 
moving forces. It means that the superposition princi-
ple here is still acceptable and therefore successive 
moving loads which well model the train loading 
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condition can also be simulated with the same ap-
proach.  

The same comparison was performed for the coef-
ficient of variation of the two beam theories, Ti-
moshenko and Euler beam. Since the coefficient of 
variation is a dimensionless parameter and is defined 
by Eqs. (41-42), the type of the selected theory has no 
significant effect on the coefficient of variation. This 
is because any change of the theory leads to the same 
magnitude of variations both in denominator and 
numerator of the Eqs. (41) and (42). 
 

4. Conclusions 

The response of an infinite beam supported by Pas-
ternak foundation with randomly distributed stiffness 
subjected to harmonic moving loads was investigated. 
The mean value and variance of the beam deflection 
and bending moment were calculated by using the 
first order perturbation method. Two practical cases 
of cosine and exponential covariance were used to 
simulate the uncertainty of the foundation stiffness 
and a frequency analysis was carried out for the first 
time in this paper. The influences of the correlation 
length on the responses were studied as well. Conclu-
sions are as follows: 

(1) Using Green’s function approach, a closed-form 
solution in integral form applicable in the frequency 
analysis of tracks was obtained. The presented 
method and also the results are applicable in some 
related fields in railway engineering such as noise 
analysis of tracks, ride comfort of railway vehicles 
and also dynamic and fatigue design of railway tracks. 

(2) Using the solution method presented, the distri-
bution of the standard deviation of the deflection and 
bending moment along the beam were calculated and 
the influences of the load frequency on both of them 
were investigated. Increasing the load frequency 
causes the position of the maximum values to move 
farther back with respect to the load position and also 
makes them to be distributed in a wider area along the 
beam. 

(3) The parametric study showed that in each fre-
quency response there is a peak value for the fre-
quency which depends on the correlation length. The 
peak frequency is a decreasing function of the corre-
lation length. Dependency of the peak frequency on 
the correlation length is based on the covariance type 
of the foundation stiffness and for the case of cosine 
covariance it is much stronger than exponential co-

variance. Moreover, it has a higher value for the de-
flection than the bending moment. 

(4) For the case of exponential covariance, a com-
parison between two dimensionless parameters of the 
coefficient of variation of the beam deflection and 
bending moment showed that the former one is higher. 
Regarding the unavailability of a device for direct 
measurement of the bending moment, this result does 
have a significant advantage in design of railway 
tracks because it shows that using a typical measured 
coefficient of variation of the beam deflection is a 
safe criterion in design of tracks based on the beam’s 
strength.  

(5) With increasing the correlation length, the coef-
ficient of variation of the beam deflection and bend-
ing moment remain constant; this phenomenon, i.e., 
saturation, does occur for the two selected cases of 
exponential and cosine covariance of the stiffness. 
For the exponential covariance, the saturation occurs 
in lower correlation lengths other than the cosine 
covariance. In the latter case, there is a peak value of 
correlation length between 1 to 2 meters at which 
coefficient of variation of the bending moment is at 
its highest level and is a decreasing function of the 
load frequency. 

(6) Numerical results obtained for the two theories 
of Euler and Timoshenko beams were compared. It 
was found that the magnitude of the maximum de-
flection of a Timoshenko beam is larger than that of 
an Euler beam and inversely the magnitude of the 
maximum bending moment of a Timoshenko beam is 
lower with respect to the Euler beam. One can con-
clude that Timoshenko and Euler theories provide 
safer margins, respectively, for design of the founda-
tion and the beam. 
 

Nomenclature----------------------------------------------------------- 

A : Cross-sectional area 
C  : Foundation damping 
Cov : Covariance 
D  : Correlation length 
E  : Modulus of elasticity 
F  : Moving force 
G  : Shear modulus 
I  : Cross-sectional moment of inertia 
k  : Foundation stiffness 
k* : Sectional shear coefficient of the beam 
km  : Mean stiffness 
M  : Bending moment 
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Pf  : Foundation force per unit length 
s  : Distance from the moving load 
t  : Time 
v  : Load speed 
w  : Beam deflection 
x  : Longitudinal position 
δ  : Dirac Delta function 
µ  : Shear layer stiffness 
ρ : Beam material density 
σ  : Standard deviation 
φ : Beam slope due to bending 
Ω  : Load frequency 
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